

APPROVED BY

Director of Power Engineering

School /

A.S. Matveev

«30»

SYLLABUS FOR

"Electromagnetic compatibility and electrical insulation systems"

Field of study: 13.04.02 "Electric Power and Electrical Engineering"

Program name: "Electric Generation and Transportation"

Level of study: Master

Year of admission: 2019

Semester, year: semester - 2; 2020.

ECTS: 3

Total Hours: 108

Contact Hours: 32

• Lectures: 8 • **Labs:** 16

• Practical experience: 8

Assessment: credit-test

Type of intermediate certification: no

Department: Division for Power and Electrical Engineering

___ Ivaschutenko A.S. **Head of Division:**

Leonov A.P. **Instructor:**

Formation of knowledge and skills in the field of calculation and design of
power supply systems based on renewable energy sources are the main objectives
of the discipline for students.

Objectives O1, O3 and O5 of basic educational program (BEP) "Electric Power and Electrical Engineering" will be reached as a result of learning this discipline. Achieved knowledge, skills and experience will prepare the student for:

Course **Objectives**

- design and engineering activity in the field of electro energy and electro technic and to be able to choose modern equipment, design new world competitive electro technical objects, systems and units using modern automated design soft, to be able evaluate technical and economical effectiveness (O1);
- scientific and research activity including interdisciplinary areas such as mathematical modeling of processes and objects, to be able to do experimental research and analysis of the results, design of innovation methods increasing effectiveness of designing and operation of electrical energy systems and objects (O3);
- self-education and learning new skills for career realization and development

According to the requirements of BEP and Federal Government Educational Standard (FGES) studying the discipline "Advanced topics of power supply" is focused on formation among the students next competences (see table 1):

Constituents of the learning outcomes

	Learning	Learning outcomes components					
	Outcome s	Code	Knowledge	Cod e	Skills	Code	Experience
Learning Outcomes	LO 1	K 1.2	allocates and systematizes the main ideas in scientific texts and educational publications that contribute to solving the problem	S 1.1	Allocate and justify anthropocentr ic criteria on the basis of which decision models are formed	E1.2	methods and principles for the collection and analysis of factual material from various sources
		K 1.3	formulates anthropocentri c decision- making models, methods decisions and justification Criteria	S 1.6	to apply psychological -pedagogical and didactic knowledge in practical activity	E1.4	methods and means of cognition, self- study and self- control

		characterizing the quality of decisions				
LO 2	K 2.1	communicatio n in a foreign language in a professional environment	S 2.2	to apply psychological -pedagogical and didactic knowledge in practical activity	E 1.4	methods and means of cognition, self- study and self- control
	K5.4	a reasoned presentation of one's own point of view	S 5.4	analysis of information about object, reached using technical soft	E2.1	preparing of initial data according to chosen object
LO5	K5.4	use of scientific and technical methods for solving engineering problems	S 5.5	analyze the logic of various kinds of reasoning	E5.5	main scientific schools, concepts, sources of knowledge and methods of working with them
LO 8	K 8.1	standards and normative documents focused on effectiveness of energy consumption	S 8.1	development of methodologic al and normative data	E 8.1	working with technical documentation and standards

Masters that have acquired the discipline should be achieved results, listed in Table 2.

Table 2 Expected results of acquiring the discipline

	№	Result	
	CO1	Improve and develop their intellectual and general cultural level in	
		the production and transportation of electrical energy.	
	CO 2	Free to use Russian and foreign (English) language as a means of	
		business communication in the field of the quality of electrical	
		energy in power supply systems.	
	CO 5	To apply in-depth natural-science, mathematical, socio-economic	
		and professional knowledge in an interdisciplinary context in	
		innovative engineering activities in the field of the quality of	
		electrical energy in power supply systems	
	CO 8	Conduct innovative engineering research in the field of optimizing	
		the quality of electrical energy in power supply systems.	
Course	Discipline is relating to the "Professional cycle" of BEP "Electrical power and		
Outline	Electrical engineering" and applicable for such profiles as: Electrical Generation		

	and Transportation", "Optimization of power supply systems", "Renewable						
	Energy Sources".						
	This discipline is one of the major, it is autonomous and also could be a						
	base for special disciplines. It consist of next parts:						
	Reactive power;						
	• Relations of energy supplier and consumer at the field of generation and						
	consumption of reactive power;						
	 Reactive power sources at industrial enterprises; 						
	Consumption of reactive power at industrial enterprises;						
	 Transverse compensation of reactive power; 						
	 Longitudinal compensation of reactive power; 						
	Technical and economical calculations of compensation of reactive						
	power.						
	Prerequisites of this discipline are: "Computer, network and information						
D	technologies", "Emergency control in power systems"						
Prerequisites	Corequisites: "Integration of renewable energy systems into power supply						
	systems", "Special issues of electricity supply".						
Facilities and	Laboratory of the special course on power supply - Building 8, room 245,						
Equipment	5 units;						
Equipment	Assessment of the quality of the discipline in the course of the current and						
	<u> </u>						
	intermediate certification of students is carried out in accordance with the						
	Regulations for the Intermediate Attestation of Students of the Tomsk						
	Polytechnic University.						
	The maximum score for the discipline in the semester is 100 points,						
Grading	including:						
Policy	• within the current control - 100 points,						
	Assessment of the quality of the discipline is based on the results of						
	evaluation activities.						
	Evaluation activities of the current monitoring by sections and types of						
	educational activities are given in the Appendix "Calendar rating-plan for						
	studying discipline (module)".						
	Class attendance will be taken into consideration when evaluating students`						
Course	participation in the course. Students are expected to actively engage in class						
Policy	discussions about the assigned readings. Attendance is strictly controlled and all						
]	class is obligatory to presence.						
	Main literature.						
	1. Voropay N.I. Reliability of power supply systems: textbook / NI Voropai;						
	Irkutsk National Research Technical University (IRNITU); Amur State						
	University (AmSU); Russian Academy of Sciences (RAS), Siberian						
	Branch (SO), Institute of Power Systems named after. L. A. Melentieva						
	(ISEM) 2 nd ed., Pererab, and additional Novosibirsk: Science, 2015.						
Teaching	- 208 pp ISBN 978-5-02-019201-0;						
Aids and	2. Vasilieva TN. Reliability of electrical equipment and power supply						
Resources	systems / TN Vasil'eva Moscow: Hotline-Telecom, 2015 152 p .: Ill						
	- Bibliography: p. 145-150 ISBN 978-5-9912-0468-2;						
	3. Control and analysis of the quality of electrical energy in general-purpose						
	power supply systems: a collection of documents Moscow: Alvis, 2013.						
	- 122 p .: ill Normative documents ISBN 978-5-904098-36-0.						
	Additional literature:						
	4. GOST 13109-97 "Norms of quality of electric energy in general-purpose						
· · · · · · · · · · · · · · · · · · ·							

- power supply systems".
- 5. Volkov, N.G. Quality of electricity in power supply systems: a textbook / NG Volkov; National Research Tomsk Polytechnic University (TPU). Tomsk: Publishing house TPU, 2010. 152 p .: il .. Bibliograf. from. 149
- 6. Lukutin BV The quality of electrical energy. Laboratory workshop: a textbook for universities / B. V. Lukutin, I. O. Muravlev, A. A. Muravlev; National Research Tomsk Polytechnic University (TPU). Tomsk: Publishing house TPU, 2010. 87 p.: il .. Bibliograf. from. 83 ..
- 7. G.N. Klimova, A.V. Kabyshev. Elements of energy saving in power supply of industrial enterprises: textbook / GN Klimova, AV Kabyshev; Tomsk Polytechnic University (TPU). Tomsk: Publishing house TPU, 2008. 187 p.: il .. Textbooks of Tomsk Polytechnic University. Bibliographic list: p. 142.
- 8. Kalyavin, V.P. Reliability and diagnostics of electrical installation elements: a manual / VP Kalyavin, LM Rybakov. St. Petersburg. Elmore, 2009. 336 p .: il .. Bibliograf. from. 326-327. ISBN 5-7399-0150-2.
- 9. A. Cusco, Alexander. Power supply networks. Methods and means of energy quality assurance: Per. with English. / A. Cusco, M. Thompson. Moscow: Dodeca-XXI, 2010. 334 p .: il .. Bibliography at the end of chapters. Subject index: with. 331-333. ISBN 978-5-94120-226-3.

Information support

Internet resources (including LMS MOODLE and other educational and library resources):

10. Lukutin B. V. The quality of power supply to industrial consumers: textbook [Electronic resource] / BV Lukutin IO Muravlev, AA Muravlev; National Research Tomsk Polytechnic University (TPU). - 1 computer file (pdf; 4.8 MB). - Tomsk: Publisher TPU, 2014. - Title from the title screen. - Access from the corporate network of TPU. - System requirements: Access scheme: http://www.lib.tpu.ru/fulltext2/m/2014/m315.pdf

Instructor

Leonov A.P., leonov_ap@tpu.ru