

APPROVED BY

Director of Nuclear Science & Engineering School
Oleg Yu. Dolmatov
"25" 06 2020

Course Name: Nuclear Technologies and Ecology of Fuel Cycle

Field of Study: Nuclear Science and Technology

Programme name: Nuclear Science and Technology

Academic profile: Nuclear Safety, Security and Non-Proliferation of Nuclear Materials

Level of Study: Master Degree Programme

Year of admission: 2020

Semester, year: semester 1, year 2

ECTS: 2

Total Hours: 72

Contact Hours: 32

Lectures: 16

Practice: 16

Self-study: 40

Assessment: Exam

Division: Nuclear Fuel Cycle

Director of Programme

Instructor

_/Vera V. Verhoturova

/ Andrey O. Semenov

Course name: Nuclear Technologies and Ecology of Fuel Cycle

Course Overview

Course	The objective of the course is to develop knowledge and skills to perform professional activity in a variety of forms including research and technological
Objectives	activities in the fields related to nuclear power engineering.
	 Upon completion of the course, a graduate should acquire a set of professional competencies including: Ability to apply knowledge of modern communication technologies in a foreign language in the field of nuclear fuel cycle
Learning Outcomes	 Ability to analyze the stages of the nuclear fuel cycle, including storage and transportation of nuclear fuel, its production
	 Ability to assess the prospects of the nuclear fuel cycle development, the stages of closed and open nuclear fuel cycles, key features of the nuclear core of power plants
	The target course is taught using a variety of teaching forms such as:
	- 8 lectures;
	- 8 practices;
	- 2 colloquiums;
	3 tests;1 report
Course	Within the framework of the course, students study the following sections:
Outline	Section 1. Nuclear fuel cycle. Pre-reactor part.
	Section 2. Nuclear reactors and its energy application.
	Section 3. Fuel reprocessing and management of radioactive waste and spent
	nuclear fuel.
	Learners' self-study is arranged in a form of individual research of the topics,
	preparation for colloquiums and midterm tests, performing a case study. During the course of study, learners are expected to write 1 report based on the review.
Prerequisites	1. Nuclear Physics.
(if available)	2. Materials of Nuclear Installations.
Course Structure	The content of the course covers 3 topics. Each topic is studied through lectures
	and practical experiences.
	The target course consists of two sections.
	Section 1. Nuclear fuel cycle. Pre-reactor part
	Having mastered the content of this section, students will know about the role of
	nuclear energy in the modern world, obtain knowledge of the main uranium ore
	deposits, mining and processing of uranium ores technologies, perspective types of uranium enrichment technologies, different types of reactors fuel as well as of
	fuel fabrication technologies.
	Section 2. Nuclear reactors and their application for energy production
	Having mastered the content of this section, learners will acquire knowledge of
	existing and prospective types of Russian and international nuclear reactors, key
	features, advantages and disadvantages of these reactors.

	T
	Section 3. Fuel reprocessing and management of radioactive waste and spent
	nuclear fuel
	Upon completion of this section, students will learn information about the
	classification of radioactive waste, waste reprocessing technologies and disposal
	methods. In the framework of the course students will have a report 2 colleguiums 2 tests
	In the framework of the course, students will have: a report, 2 colloquiums, 3 tests
	and a final test in the form of exam.
Facilities	1. Lecture room with multimedia equipment (projector, PC): 634050, Tomsk, Lenina ave., 2, building 10, room 340.
and	2. Room for practical classes equipped with PCs: 634050, Tomsk, Lenina ave., 2,
Equipment	building 10, room 248.
	In accordance with TPU assessment system we use:
	 Current assessment which is performed on a regular basis during the semester
	by scoring the quality of mastering the theoretical material and the results of
	practical activities (tests, tasks, problem solving). Max score for current
	assessment is 80 points.
	 Course final assessment (exam) is performed at the end of the semester. Max
	score for course final assessment is 20 points.
	The current assessment allows revealing the quality of learners mastering the
	course material referring to all sections of the course "Fundamentals of Nuclear
	Fuel Cycle". The current assessment tests must be done in writing within the
	semester. Three tests are planned for the semester.
	<i>Report</i> is performed by each of the students independently. Each student receives
	their individual topic, which must be thoroughly researched. The results of the
	research work must be presented in a report, which is accompanied by a
	multimedia presentation. Report must include the literature overview on the given
	topic and have the following parts: a title page, outline, introduction, main body
Grading	sections, conclusion and reference list. The volume of the report should be at least
Policy	7-15 pages. Defense of the report is carried out in the form of oral presentation,
	which should be delivered within 7-9 minutes.
	In order to assess the current level of knowledge, it is supposed to conduct 2 colloquiums in the form of an oral interview. It is necessary to answer on 5
	theoretical questions based on the materials of the relevant sections of the
	discipline. The correct answer to this question is estimated at 4 points. The
	maximum possible number of points for one colloquium is 20 points.
	Exam is a final assessment form, which aims to reveal developed learning
	outcomes and determine the degree of their correspondence to those planned in the
	course programme. A student is admitted to the exam on condition that all the tests
	and colloquiums are passed, all projects are completed and evaluated by the course
	instructor. The structure of an exam paper includes two questions. The exam is
	performed orally. A student answers the questions and presents ways of the
	problem solution. Additional questions and tasks might be provided by the
	examiner.
	The final score is determined by summing the scores of the current assessment
	during the semester and exam score at the end of the semester. Maximum overall
	score corresponds to 100 points, min pass score is 55 points.
Course	Class attendance will be taken into consideration when evaluating students'
Policy	participation in the course. Students are expected to be actively engaged in class
	discussions on the assigned reading materials. All classes are obligatory to attend.

Teaching	Compulsory reading:
Aids and	1. Zohuri, B. Thermal-Hydraulic Analysis of Nuclear Reactors / B. Zohuri, N.
Resources	Fathi, — Cham : Springer, 2015. — 651 с. — Текст : электронный //
	SpringerLink. — URL: https://link.springer.com/book/10.1007/978-3-319-
	<u>17434-1</u> (дата обращения: 20.09.2020). — Режим доступа: из
	корпоративной сети ТПУ.
	2. Kessler, G. Sustainable and Safe Nuclear Fission Energy. Technology and
	Safety of Fast and Thermal Nuclear Reactors / G. Kessler. — Berlin :
	Springer, 2012. — 464 с. —Текст : электронный // SpringerLink. — URL:
	https://link.springer.com/book/10.1007/978-3-642-11990-3 (дата обращения:
	20.09.2020). — Режим доступа: из корпоративной сети ТПУ.
	3. Sanctis, De E. Energy from Nuclear Fission. An Introduction / E De Sanctis,
	S. Monti, M. Ripani. — Cham : Springer, 2016. — 278 с Текст :
	электронный // SpringerLink. — URL:
	https://link.springer.com/book/10.1007/978-3-319-30651-3 (дата обращения:
	20.09.2020). — Режим доступа: из корпоративной сети ТПУ.
	Additional reading:
	1. Morss, L. R. The Chemistry of the Actinide and Transactinide Elements. Vol.
	1–6 / L.R. Morss, N. M. Edelstein, J.Fuger.— 4 edited Dordrecht :
	Springer, 2011. — 4196 р. — Текст : электронный // SpringerLink. — URL:
	https://link.springer.com/book/10.1007/978-94-007-0211-0 (дата обращения:
	20.09.2020). — Режим доступа: из корпоративной сети ТПУ.
	Andrey O. Semenov, Senior lecturer, Nuclear Fuel Cycle Division, Nuclear
	Science & Engineering School, TPU, +7 (3822) 701-778 ext. 2330, e-mail:
Instructor	semenov_ao@tpu.ru, personal site:
	https://portal.tpu.ru/SHARED/s/SEMENOV_AO/eng