

APPROVED BY

Director of Nuclear Science & Engineering School / Oleg Yu. Dolmatov 2020 06

Course Name: International and National Regulation in Nuclear Safety

Field of Study: Nuclear Science and Technology

Programme name: Nuclear Science and Technology

Specialization: Nuclear Safety, Security and Non-Proliferation of Nuclear Materials

Level of Study: Master Degree Programme

Year of admission: 2020

Semester, year: semester 1, year 1

ECTS: 3

Total Hours: 108

Contact Hours: 48

- Lectures: 24
- Practical experience: 24

Self-study: 60

Assessment: Exam, graded credit-test

Division: Nuclear Fuel Cycle

Director of Programme Instructor

/Vera V. Verkhoturova / Maxim E. Silaev

Course name: International and National Regulation in Nuclear Safety

Course Overview

Course	The objective of the training course is to develop students' theoretical knowledge
Course Objectives	and practical skills, which are necessary to conduct professional activity involving
	the usage of international and national regulation in nuclear safety.
	Upon completion of the course, a graduate will obtain the knowledge of:
	- international and national regulation in fields of safety operation of nuclear and
	radiation facilities;
Learning Outcomes	- international and national regulation in the field of nuclear safety and radiation
	protection.
	Upon completion of the course, graduates are expected to develop the
	following skills:
	– to compile and present technical and scientific information used in professional
	activities in the form of a presentation;
	-
	- to draw up a general plan of a report and presentation in foreign (English)
	language in accordance with internationally accepted principals;
	- to use a regulation for development of technical documentation for operation of
	nuclear and radiation facilities;
	- to find and use the most essential aspects of regulation for nuclear safety
	analysis performance.
	Upon completion of the course, graduates should acquire the practical
	experience in:
	– using speaking skills in a foreign language in accordance with the field of
	training. The position of speaker should be proved by reasons and supported by
	auxiliary means (such as tables, graphs, charts, etc.);
	- application of a foreign language at a sufficient level for professional activities
	in future;
	- using regulatory documents for safety operation of nuclear and radiation
	facilities;
	– selection and analysis of information in international and national regulation of
	nuclear safety and radiation protection.
Course Outline	The training course is delivered through the following teaching modes:
	- 12 lectures;
	- 12 practical experiences;
	- 1 term project.
	The course consists of 2 sections, which are given below.
	Section 1. General requirements to safety systems, safety of radiation sources
	and radioactive wastes.
	Section 2. Safety requirements to nuclear reactors and nuclear fuel cycle
	facilities
	Each section includes several lectures and practical experiences.
	The training course finishes with an exam.
	The course implies conducting 2 intermediate colloquiums and a term project.
	Each colloquium is scored with the maximum of 20 points.
	Luca considerant la sectore and the manimum of 20 points.

	In the course of study, students perform 2 tests, each of which includes 4 subtests.
	Each subtest is evaluated with 5 points. Total score for each of the tests is 20
	points.
	The term project is evaluated with the maximum of 40 points for the content of
	the project and 60 points – for the defense of the project.
	The term project includes the following tasks:
	1. Development of a nuclear safety and radiation protection regulation at a
	national level.
	2. Development of a radiation protection system for a center of irradiation.
	3. Development of a nuclear safety and radiation protection system for a nuclear
	power plant.
	4. Development of a nuclear safety and radiation protection system for a research
	nuclear reactor facility.
	5. Development of nuclear safety and radiation protection system for a nuclear
	fuel circle facility.
	6. Development of a radiation protection system for a radioactive wastes
	repository facility.
	The content of the course covers 2 topics. Each topic is studied through lectures
	and practical experiences.
	Section 1. General requirements to safety systems, safety of radiation sources
	and radioactive wastes.
	Safety requirements at the international and national levels are hierarchical. The
	first element of the hierarchical structure is the requirements at the state/national
	level. The following are the requirements for a management system in the field of
	nuclear safety and radiation protection. The most generic are the requirements to
	radiation sources. The radiation sources include all type of radioactive objects
	under regulatory control (from isotopic sources to nuclear and radiation facilities).
	An inherent consequence of the use of radiation sources is the generation of
	radioactive waste (RW). Safe handling with RW its own requirements.
Course	Section 2. Safety requirements to nuclear reactors and nuclear fuel cycle
Structure	facilities.
	Safety of nuclear facilities has additional requirements in comparison with
	radiation ones. Special requirements are due to the presence of a specific type of
	hazard for systems capable of neutron multiplication. Safety analysis for such
	facilities should take into account the possibility of criticality condition
	appearance in the neutron multiplication system. Special safety requirements are
	also applied to radioactive waste storage facilities. Peculiarities of the safety
	requirements for such enterprises are due to the long/unlimited nature of their use
	with the potential absence of human intervention to the storage process. The
	development of safety culture provides a continuous increase in the level of
	nuclear and radiation safety at facilities.
Facilities and	1. Lecture Hall with multimedia equipment: 634050, Tomsk, Lenin ave.,2,
Equipment	building 10, room 248, room 340.
	In accordance with TPU rating system we use:
	- Current assessment which is performed on a regular basis during the semester
Grading	by scoring the quality of mastering of theoretical material and the results of
Policy	practical activities (performance tests, perform tasks, problem solving). Max
	score for current assessment is 80 points, $min - 44$ points.
	- Course final assessment (exam/ credit test) is performed at the end of the
	course mui assessment (examp creat test) is performed at the end of the

	semester. Max score for course final assessment is 20 points, min – 11 points. The final rating is determined by summing the points of the current assessment during the semester and protection of the course project at the end of the semester. Maximum overall rating corresponds to 100 points, min pass score is 55. Attendance is strictly controlled. All classes are obligatory for attendance.
Course Policy	Attendance is strictly controlled. All classes are obligatory for attendance.
Teaching Aids and Resources	 Compulsory reading: 1. Safety Cultures, Safety Models Taking Stock and Moving Forward / by editors C. Gilbert, B. Journé, H. Laroche; C. Bieder Cham : Springer Open, 2018 Teкст: электронный // SpringerLink. – URL: https://link.springer.com/book/10.1007/978-3-319-95129-4 (дата обращения: 20.09.2020). – Режим доступа : по подписке. 2. Domenech, H. Radiation Safety. Management and Programs / H. Domenech Cham : Springer, 2017 332 p Текст: электронный // SpringerLink. – URL: https://link.springer.com/book/10.1007/978-3-319-42671-6 (дата обращения: 20.09.2020). – Режим доступа : по подписке. 3. Prince, R. Radiation Protection at Light Water Reactors / R. Prince New York : Springer, 2012. – XIV, 366 p Текст: электронный // SpringerLink. – URL: https://link.springer.com/book/10.1007/978-3-642-28388-8 (дата обращения: 20.09.2020). – Режим доступа : по подписке. 4. Additional reading: 1. Marguet S. The Physics of Nuclear Reactor / S. Marguet. – Cham : Springer International Publishing AG, 2017. – XXXII, 1445 p. – Teкст:
	электронный // SpringerLink. – <u>URL:</u> <u>https://link.springer.com/book/10.1007/978-3-319-59560-3</u> (дата обращения: 20.09.2020). – Режим доступа : по подписке.
Instructor	Maxim E. Silaev, Associate professor, Nuclear Fuel Cycle Division, School of Nuclear Science and Engineering, Tomsk Polytechnic University, e-mail: silaev@tpu.ru, phone: +7 (3822) 701-777 ext. 5410