

APPROVED BY

Director of Nuclear Science & Engineering School / Oleg Yu. Dolmatov _/ Oleg Yu. Dolmatov 06 2020

Course Name: Methods and Instruments for Nuclear and Other Radioactive Materials Measurements

Field of Study: Nuclear Science and Technology

Programme name: Nuclear Science and Technology

Academic profile: Nuclear Safety, Security and Non-Proliferation of Nuclear Materials

Level of Study: Master Degree Programme

Year of admission: 2020

Semester, year: semester 3, year 2

ECTS: 5

Total Hours: 180

Contact Hours: 64

- Lectures: 24
- Labs: 40

Self-study: 116 Assessment: Exam, graded credit-test Division: Nuclear Fuel Cycle

Director of Programme Instructor

/Vera V. Verkhoturova / Mikhail S. Kuznetsov

Course name: Methods and Instruments for Nuclear and Other Radioactive Materials Measurements

Course Overview

Course Objectives	The course aims to develop knowledge and skills, which are necessary to conduct practical activities related to the analysis of nuclear and radioactive materials at any nuclear or radiation hazardous facility. As a result of mastering the training course, graduates obtain knowledge and skills that ensure the achievement of the goals assigned for the academic program 14.04.02 "Nuclear Science and Technology" (Nuclear Safety, Security and Non-Proliferation of Nuclear Materials) and which are required to perform research, design, production and technological and organizational and managerial activities of graduates.
Learning Outcomes	 Upon completion of the course, a graduate will obtain the knowledge of: modern methods of research, evaluation and presentation of the results of work performed; measurement programs for nuclear materials and radioactive substances at the enterprises of the nuclear industry for the purpose of their accounting and control; Upon completion of the course, graduates are expected to develop the following skills: to apply modern research methods, evaluate and present the results of work performed; to apply methods of confirmatory measurements of nuclear materials; Upon completion of the course, graduates should acquire the practical experience in: applying modern methods of research, evaluation and presentation of the results of work performed; performing instrumental measurements of nuclear materials and radioactive substances.
Course Outline	The training course is delivered through the following teaching modes: - 12 lectures; - 8 labs; - 1 term project paper. The course consists of 8 sections, which are given below. Section 1. Basic concepts and requirements when working with nuclear and radioactive materials. Section 2. Radiation Detectors. Section 3. Gamma spectrometric analysis. Section 4. Basics of determining the isotopic composition of uranium. Section 5. Alpha, Beta, and Mass Spectrometry. Section 6. Fundamentals of X-ray fluorescence analysis. Section 7. Basics of recording the total neutron flux. Devices for recording the total neutron flux. Principles and devices for recording neutron coincidences.

	Section 8. Qualitative and semi-quantitative measurements.
	Each section includes several lectures and laboratory experiences.
	Laboratory work involves introducing students to most of the widely used
	methods for analyzing nuclear materials and radioactive substances. During
	laboratory works, measurements will be made using various types of detectors
	(scintillation, semiconductor, gas-filled). The methods of gamma spectrometric,
	alpha spectrometric and X-ray fluorescence analyzes will be considered.
	In the course of the term project performance, students are invited to design and
	equip a system for measuring and controlling the amount of nuclear materials and
	radioactive substances at a nuclear energy facility.
	The term project shall contain the following sections:
	– An analytical review of the proposed facility containing a description of the
	main facilities with consideration of the amount of nuclear material, by its
	movement, potential ways of changing the number of nuclear materials and
	explosives.
	- Selection of the instrument base for the NM and RS measurements at the
	facility, including a comparative analogue of domestic and foreign analogues.
	A justified choice shall be confirmed by calculations to analyze a specific NM
	and RS.
	- Analytical control of materials at the facility in case of impossibility of direct
	confirmatory measurements.
	- The economic feasibility of the system.
	The content of the course covers 8 topics. Each topic is studied through lectures
	and labs.
	Section 1. Basic concepts and requirements when working with nuclear and
	Natural and artificial sources of ionizing radiation and their sources Principles
	for ensuring radiation safety. The main standards established in NRB-99/2009.
	Requirements established by the basic sanitary rules on radiation safety.
	Categories of radiation objects. Sanitary protection zones and surveillance zones.
	Work with open sources of ionizing radiation. Groups of radionuclides by
	potential radiation hazard. Class of work with open sources of radiation.
Course	Requirements for premises of various classes. Basic requirements for
	measurements of nuclear materials and radioactive substances.
	Section 2. Radiation Detectors
	The interaction of particles with matter. The law of weakening the flow of
Shuchare	particles when passing through a substance. Theory of Gray. Ionization current.
	Ionization chamber. Boron chambers, fission chambers, helium counters. The use
	of scintillation and semiconductor counters for detecting radiation. Activation
	methods for determining ionizing radiation fluxes.
	Section 3. Gamma spectrometric analysis.
	Tasks of gamma spectrometric analysis. The main errors during the gamma-
	spectrometric analysis of NM and RS. Methods of processing the spectra of NM
	and PB. Questions of spectrum analysis, determination of the radionuclide
	Section 4 Basics of determining the isotonic composition of uranium
	Atomic and weight contents of uranium and their ratio. Emission of uranium
	samples: the 186 keV line is often used to measure enrichment Typically there
	is no interference in the gamma radiation region except in cases involving the
	is no interference in the gamma radiation region, except in cases involving the

	measurement of regenerated fuel. The technique of gamma measurements of
	infinite samples. The geometry of a collimated sample having a thickness far
	exceeding the mean free path of gamma rays with an energy of 186 keV is taken
	as infinite. Installation diagram. One-component (metallic uranium) and two-
	component (simple uranium compounds) tasks.
	Section 5. Alpha, Beta, and Mass Spectrometry
	Determination of the energy of charged particles by distance and ionization
	density. Particle energy measurement using ionization chambers, scintillation and
	semiconductor counters. Magnetic spectrometers of charged particles. Alpha
	spectrometry and its applications. Beta spectrometry and its applications. Features
	and capabilities of the analysis of the beta spectrum. Mass spectrometry.
	Section 6. Fundamentals of X-ray fluorescence analysis
	X-ray generation. Fluorescence yield. Photon transmission. Geometry
	measurement. Types of sources. The effects of attenuation in the sample.
	Attenuation correction methods. The basic equation of analysis. Types of devices
	used. Accuracy and sensitivity analyzes.
	Section 7. Basics of recording the total neutron flux. Devices for recording
	the total neutron flux. Principles and devices for recording neutron
	The basic principles of applying the registration of the total neutron flux for
	ne basic principles of apprying the registration of the total neutron hux for passive analysis of materials containing uranium and plutonium are considered
	Devices for recording the total neutron flux and their application in order of
	increasing complexity Special applications of devices for recording the total
	neutron flux. Neutron coincidence method for determining the mass of uranium
	and plutonium samples based on neutron radiation. The contraction of neutron
	coincidence counters and operation features are described.
	Section 8. Qualitative and semi-quantitative measurements
	The section describes the attributive features of nuclear materials and methods for
	measuring them. Semi-quantitative measurements of waste are considered,
	confirming measurements during the inventory and transfer of materials,
	measurements of deposits.
	1. Lecture Hall with multimedia equipment: 634050, Tomsk, Lenin ave. 2,
Facilities and	building 10, room 248.
Equipment	2. Physical modelling laboratory, which includes laboratory scales VLTE-5000 g
Equipment	with a calibration weight of 2 kg, Barcode ID Training Kit, sealing devices
	Training kit: 634050, Tomsk, Lenin ave. 2, building 10, room 318.
	In accordance with TPU rating system we use:
	- Current assessment which is performed on a regular basis during the semester
	by scoring the quality of mastering of theoretical material and the results of
C I I	practical activities (performance tests, perform tasks, problem solving). Max
Grading	score for current assessment is 80 points, $\min - 44$ points.
Policy	- Course final assessment (exam/ credit test) is performed at the end of the
	semester. Max score for course final assessment is 20 points, $min - 11$ points.
	during the semaster and protection of the source project of the and of the semaster
	Maximum overall rating corresponds to 100 points, min pass score is 55
	Attendance is strictly controlled. All classes are obligatory for attendance
Course Policy	racentalie is survey controlled. The classes are congutory for attendance.

Teaching	Compulsory reading:
Aids and	1. Cerrito, L. Radiation and Detectors. Introduction to the Physics of Radiation
Resources	and Detection Devices / L. Cerrito Cham : Springer International Publishing,
	2017. — XIV, 210 р. — Текст: электронный // SpringerLink. – URL:
	<u>https://link.springer.com/book/10.1007/978-3-319-53181-6</u> (дата обращения:
	20.09.2020). – Режим доступа : по подписке.
	2. D'Auria S. In Introduction to Nuclear and Particle Physics / S. D'Auria
	Cham : Springer, 2018. — XIII, 192 р. — Текст: электронный //
	SpringerLink URL: https://link.springer.com/book/10.1007/978-3-319-
	<u>93855-4</u> (дата обращения: 20.09.2020). – Режим доступа : по подписке.
	3. Tavernier, S. Experimental Techniques in Nuclear and Particle Physics / S.
	Tavernier New York : Springer, 2010. – IX, 306 р Текст: электронный //
	SpringerLink. – URL: https://link.springer.com/book/10.1007/978-3-642-
	<u>00829-0</u> (дата обращения: 20.09.2020). – Режим доступа : по подписке.
	Additional reading
	1. Morse, E. C. Analytical Methods for Nonproliferation / E. C. Morse. — Cham
	: Springer International Publishing, 2016. — XIII, 250 р. — Текст :
	электронный // SpringerLink. – URL:
	<u>https://link.springer.com/book/10.1007/978-3-319-29731-6</u> (дата обращения:
	20.09.2020). – Режим доступа : по подписке.
	Mikhail S. Kuznetsov, Associate Professor, Nuclear Fuel Cycle Division, School
	of Nuclear Science and Engineering, Tomsk Polytechnic University, e-mail:
Instructor	kms@tpu.ru, tel.: +7 (3822) 701-777 ext. 2330, personal site:
	https://portal.tpu.ru/SHARED/k/KMS/eng