МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ
Директор обеспечивающей
Школы неразрушающего
контроля и безопасности
Д.А. Седнев
« 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2019 г. ФОРМА ОБУЧЕНИЯ очная

Квантовая и оптическая электроника Направление подготовки/ 11.03.04 Электроника и наноэлектроника специальность Образовательная программа Прикладная электронная инженерия (направленность (профиль)) Специализация Промышленная электроника высшее образование - бакалавриат Уровень образования Курс семестр 8 Трудоемкость в кредитах 3 (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 11 Контактная (аудиторная) Практические занятия 11 работа, ч Лабораторные занятия 22 ВСЕГО 44 Самостоятельная работа, ч 64 ИТОГО, ч 108

Вид промежуточной аттестации	экзамен	Обеспечивающее подразделение	Отделение Электронной инженерии
Зав. кафедрой-руководитель			
отделения на правах кафедры	(leve)		П.Ф. Баранов
Руководитель ООП		Mass	В.С. Иванова
Преподаватель		191	С.Н. Торгаев

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5 Общей характеристики ООП) состава компетенций для подготовки к

профессиональной деятельности.

10.		Индикаторы достижения компетенций		Составляющие результатов освоения (дескрипторы компетенции)	
Код компетенции	Наиме нование компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование
ПК(У)-2	Способен аргументировано выбирать и реализовывать на практике эффективную			И.ПК(У)- 2.4В1	Владеет навыками экспериментального исследования приемо-передатчиков электромагнитного излучения
	методику экспериментального исследования параметров и характеристик приборов, схем, устройств и установок	И.ПК(У)-2.4	Демонстрирует знания в области квантовой и оптической электроники	И.ПК(У)-2.4 У1	Умеет проводить экспериментальные исследования характеристик и параметров оптоэлектронных устройств
	электроники и наноэлектроники различного функционального назначения			И.ПК(У)-2.4 31	Знает физические основы работы оптоэлектронных устройств
ПК(У)-3	Способен выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального	И.ПК(У)- 3. 5	Демонстрирует способность работы с приемо-передатчиками электромагнитного	И.ПК(У)- 3.5В1	Владеет навыками применения оптоэлектронных устройств и практической реализации схем на их основе
	назначения в соответствии с техническим заданием с использованием средств автоматизации проектирования		излучения и оптоэлектронными устройствами	И. ПК(У)- 3.5У1 И.ПК(У)- 3.531	Умеет применять оптоэлектронные устройства различного назначения Знает основы расчета оптоэлектронных схем

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к вариативной части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Планируемые результаты обучения по дисциплине		
Код	Наиме нование	достижения
		компетенции
РД-1	Применять знания основных характеристик, параметров, моделей, схем	И.ПК(У)-2.4
	замещения базовых компонентов оптоэлектронных схем.	
РД-2	Выполнять расчеты оптоэлектронных схем и оптических систем	И.ПК(У)-2.4
РД-3	Применять экспериментальные методы определения параметров	И.ПК(У)-2.4 И.ПК(У) 2.5
	излучателей и приемников оптического излучения	И.ПК(У)-3.5
РД-4	Выполнять проектирование оптоэлектронных схем и оптических систем	И.ПК(У)-3.5

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый	Виды учебной деятельности	Объем
	результат		времени, ч.
	обучения по дисциплине		
Раздел 1. Введение	РД-1	Лекции	1
		Практические занятия	0
		Лабораторные занятия	0
		Самостоятельная работа	8
Раздел 2. Источники излучения	РД-1	Лекции	4
	РД-2	Практические занятия	2
		Лабораторные занятия	12
		Самостоятельная работа	20
Раздел 3. Типы оптических сред	РД-2	Лекции 3	
		Практические занятия	5
		Лабораторные занятия	4
		Самостоятельная работа	12
Раздел 4. Приемники (датчики)	РД-3	Лекции	2
оптического излучения		Практические занятия 2	
		Лабораторные занятия	0
		Самостоятельная работа	12
Раздел 5. Схемы оптико-	РД-2	Лекции	1
электронных устройств и	РД-4	Практические занятия	2
области их применения		Лабораторные занятия	6
		Самостоятельная работа	12

Содержание разделов дисциплины:

Раздел 1. Введение

Назначение дисциплины и ее место в общепрофессиональной подготовке дипломированного специалиста в области электроники. Предмет и содержание курса, его роль и место среди других дисциплин. Понятие о квантовой и оптической электронике. История развития квантовой электроники и оптоэлектроники. Основные функции и обобщенная схема оптико-электронных прибора.

Темы лекций:

1. Введение в квантовую электронику

Раздел 2. Источники излучения

В данном разделе рассматриваются типы источников электромагнитного излучения и их основные параметры. Большое внимание уделяется источникам когерентного излучения.

Темы лекций:

- 1. Спонтанные и индуцированные переходы, коэффициенты Эйнштейна, когерентность вынужденного излучения. Поглощение и усиление излучения, ширина линии излучения. Способы возбуждения излучения.
- 2. Некогерентные источники излучения.
- 3. Источники когерентного излучения.

Темы практических занятий:

- 1. Вывод условия инверсии
- 2. Условия подбора оптимальной накачки

Названия лабораторных работ:

- 1. Основы лазерной безопасности. Гелий-неоновый лазер
- 2. Измерение диаметра пучка расходимости излучения
- 3. Лазер на парах бромида меди
- 4. Твердотельный лазер
- 5. Полупроводниковый лазер

Раздел 3. Типы оптических сред

Данный раздел посвящен вопросам распространения излучения в различных средах (жидких, твердых и газообразных). Также рассматриваются вопросы преобразования электромагнитного излучения в оптических средах.

Темы лекций:

- 1. Жидкие, твердые и газообразные оптические среды.
- 2. Прохождение излучение через вещество, процессы поглощения, рассеяния, нелинейные взаимодействия.

Темы практических занятий:

- 1. Технологии создания оптических волокон.
- 2. Оптоволоконные линии связи
- 3. Расчет потерь в линиях связи

Названия лабораторных работ:

1. Передача данных по оптоволокну

Раздел 4. Приемники (датчики) оптического излучения

Раздел посвящен приемникам электромагнитного излучения и физическим основам их работы. Студенты изучают широкий класс приёмников — от газонаполненных и вакуумных до полупроводниковых.

Темы лекций:

1. ФЭУ, ФЭКи, фотодиоды (ФД), лавинные фотодиоды (ЛФД), фотосопротивления, ПЗС-линейки и матрицы).

Темы практических занятий:

1. Анализ быстродействия вакуумных и газонаполненных фотоэлементов. Быстродействие полупроводниковых приемников. Выбор приемников для регистрации излучения конкретных типов лазеров

Раздел 5. Схемы оптико-электронных устройств и области их применения

В данном разделе рассматриваются виды и принципы работы различных оптоэлектронных устройств. Отдельное внимание уделяется вопросам применения оптоэлектронных устройств в электронике. Также затрагиваются вопросы построения волоконно-оптических линий связи.

Темы лекций:

1. Физика и техника оптрона, как основного элемента (ОЭУ). Оптические линии связи, Оптические запоминающие устройства. Связь через атмосферу. Волоконная оптика. Типы световодов. Ввод излучения в световод. Потери излучения в световоде.

Дисперсия мод. Модуляция излучения. Волоконно-оптические линии связи. ОЭУ в системах диагностики и контроля окружающей среды, медицинской оптоэлектроники.

Темы практических занятий:

1. Решение задачи – распространение излучения на атмосферной трассе

Названия лабораторных работ:

1. Реализация схемы визуально-оптического контроля.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Работа в электронном курсе (изучение теоретического материала, выполнение индивидуальных заданий и контролирующих мероприятий и др.);
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Выполнение домашних заданий, расчетно-графических работ и домашних контрольных работ;
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Анализ научных публикаций по заранее определенной преподавателем теме;
- Подготовка к оценивающим мероприятиям;

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

- 1. Евтушенко, Геннадий Сергеевич. Квантовая и оптическая электроника : практикум [Электронный ресурс] / Г. С. Евтушенко, Ф. А. Губарев; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 1.1 MB). Томск: Изд-во ТПУ, 2010. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader.. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2011/m177.pdf (контент)
- 2. Шишкин, Геннадий Георгиевич. Электроника: учебник для бакалавров [Электронный ресурс] / Г. Г. Шишкин, А. Г. Шишкин. 2-е изд., испр. и доп. Электронные учебники издательства "Юрайт". Электронная копия печатного издания. Доступ из корпоративной сети ТПУ— ISBN 978-5-9916-3422-9.

Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2015/FN/fn-96.pdf (контент)

Дополнительная литература

1. Шука, Александр Александрович. Электроника в 4 ч. Часть 3 квантовая и оптическая электроника: Учебник Для академического бакалавриата / Шука А. А., Сигов А. С.; отв. ред. Сигов А. С.. — 2-е изд., испр. и доп. — Электрон. дан.. — Москва: Юрайт, 2016. — 117 с. — Высшее образование. — URL: https://urait.ru/bcode/392444 Режим доступа: Электронно-библиотечная система Юрайт, для авториз. пользователей.. — ISBN 978-5-9916-7116-3: 349.00. Схема доступа: https://urait.ru/bcode/392444 (контент)

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. http://www.quantum-electron.ru/
- 2. iopscience.iop.org/journal
- 3. http://www.laserfocusworld.com/index.html
- 4. Информационно-справочные системы и профессиональные базы данных HTБ https://www.lib.tpu.ru/html/irs-and-pdb

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

Лицензионное программное обеспечение (в соответствии с **Перечнем** лицензионного программного обеспечения ТПУ):

- 1. Adobe Acrobat Reader DC;
- 2. Adobe Flash Player;
- 3. Cisco Webex Meetings;
- 4. Document Foundation LibreOffice;
- 5. Google Chrome;
- 6. Microsoft Office 2007 Standard Russian Academic;
- 7. Mozilla Firefox ESR;
- 8. Tracker Software PDF-XChange Viewer;
- 9. Zoom Zoom;
- 10. WinDjView

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее оборудование

Nº	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634028, Томская область, г. Томск, Тимакова улица, 12, 101	 Диодный лазер LS-2-N-660-2000S - 1 шт.; Оборудование для позиционирования оптических элементов - 1 шт.; Объектив Navitar DO-5095 50mm - 1 шт. Спектрофотометр ПЭ-5400В - 1 шт. Детекторный модуль на основе фотоумножителя с мультищелочным фотокатодом и встроенным усилителемРММ02 - 1 шт. Платформа позиционирования образцов ХҮ-ТТ - 1 шт. Газовый лазер ГН-5 - 1 шт. Прибор Фотодиод DET 10A/M - 1 шт. Газовый лазер ГН-3-1 - 1 шт. Комплект учебной мебели на 20 посадочных мест;
2.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации 634050, Томская область, г. Томск, Ленина проспект, д. 30 209	Доска аудиторная настенная - 3 шт.; Комплект учебной мебели на 96 посадочных мест; Компьютер - 2 шт.; Проектор - 1 шт.
3.	Аудитория для проведения учебных занятий всех типов, курсового проектирования,	Доска аудиторная настенная - 1 шт.; Компьютер - 1 шт.; Проектор - 1 шт.; Комплект учебной мебели на 32 посадочных мест.

Nº	Наименование специальных помещений	Наименование оборудования
	консультаций, текущего	
	контроля и промежуточной	
	аттестации	
	634034, Томская область, г.	
	Томск, Ленина проспект, 30а,	
	46	

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 11.03.04 Электроника и наноэлектроника, специализации «Промышленная электроника» (приема 2019 г., очная форма обучения).

Разработчик(и):

Должность	ФИО
Доцент ОЭИ	С.Н. Торгаев

Программа одобрена на заседании Отделения электронной инженерии ИШНКБ (протокол № 19 от 28.06.2019).

Зав. кафедрой – руководитель отделения на правах кафедры, к.т.н.

П.Ф. Баранов

подпись

Лист изменений рабочей программы дисциплины:

Учебный год	Содержание /изменение	Обсуждено на заседании ОЭИ ИШНКБ (протокол)
2020/2021 учебный год	1. Обновлено программное обеспечение 2. Обновлен состав профессиональных баз данных и информационно-справочных систем 3. Обновлено содержание разделов дисциплины 4. Обновлен список литературы, в том числе ссылок ЭБС	от 01.09.2020 г. № 37
2021/2022 учебный год	1. Обновлено содержание разделов дисциплины 2. Обновлено ПО в рабочей программе дисциплины 3. Обновлен список литературы 4. Обновлен перечень профессиональных баз 5. Обновлена аннотация рабочей программы дисциплины 6. Обновлены материалы в ФОС дисциплины	от 30.08.2021 г. № 54
2022/2023 учебный год	1. Обновлено содержание разделов дисциплины 2. Обновлено ПО в рабочей программе дисциплины 3. Обновлен список литературы 4. Обновлен перечень профессиональных баз 5. Обновлены материалы в ФОС дисциплины	от 27.06.2022 г. № 67