МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ Директор ИШЭ ______Матвеев А.С. «01» сентября 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ <u>очная</u>

Комплексный проект Направление подготовки 13.03.02 Электроэнергетика и электротехника Образовательная программа Электроэнергетика Специализация Электроэнергетические системы и сети Уровень образования высшее образование - бакалавриат 7 Курс 4 семестр Трудоемкость в кредитах 4 (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции Практические занятия Контактная (аудиторная) _ работа, ч Лабораторные занятия 22 ВСЕГО 22 Самостоятельная работа, ч **50** Курсовой проект в т.ч. отдельные виды самостоятельной работы с выделенной промежуточной аттестацией итого, ч **72**

Вид промежуточной	Диф. зач	Обеспечивающее	660
аттестации		подразделение	
И.о. заведующего кафедрой – руководителя отделения на правах кафедры		A	Ивашутенко А.С.
Руководитель ООП	B	Mew	Шестакова В.В.
Преподаватель			Бацева Н.Л.

1. Цели освоения дисциплины
Целями освоения дисциплины является формирование у обучающихся определенного
ООП (п. 6 Общей характеристики ООП) состава компетенций для подготовки к профессиональной деятельности.

Код		Индикаторы	достижения компетенций		авляющие результатов освоения (дескрипторы компетенции)
компетенции	Наименование компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование
				ОПК(У)- 3.4В5	Владеет опытом выбора коммутационных электрических аппаратов и токоведущих частей для конкретных условий эксплуатации
			Анализирует режимы	ОПК(У)- 3.4У5	Умеет осуществлять выбор коммутационных электрических аппаратов и токоведущих частей для конкретных условий эксплуатации
ОПК(У)-3	Способен использовать методы анализа и моделирования	И.ОПК(У)-	работы трансформаторов, электрических машин, электрических, электромагнитных,	ОПК(У)- 3.435	Знает конструкцию и принципы действия коммутационных электрических аппаратов и токоведущих частей
	электрических цепей и электрических	3.4.	электромеханических аппаратов различных типов, использует знание	ОПК(У)- 3.4B2	Владеет опытом исследования и анализа режимов работы трансформаторов и электрических машин
	машин		их режимов работы и характеристик	ОПК(У)- 3.4У2	Умеет рассчитывать по схемам замещения параметры электрических режимов работы трансформаторов и электрических машин, формулировать выводы по полученным результатам
				ОПК(У)- 3.432	Знает схемы замещения трансформаторов, электрических машин и правила расчета их элементов
	Способен проводить сбор и анализ данных для проектирования объектов профессионально й деятельности		Способен осуществлять	ПК(У)- 1.1В1	Владеет навыками поиска информации с использованием компьютерной техники и информационных технологий
		И.ПК(У)-1.1.	поиск, обработку и анализ информации для проведения технологических	ПК(У)- 1.1У1	Умеет формулировать условия поиска информации и ранжировать найденную информацию по степени значимости
ПК(У) -1.			расчётов и при проектировании	ПК(У)- 1.1B2	Владеет навыками графического оформления схем электрических соединений в соответствии с требованиями
		И.ПК(У)-1.2.	Способен представлять информацию в требуемом формате с использованием информационных,	ПК(У)- 1.2В1	Владеет навыками работы с технической литературой, действующими стандартами организаций, положениями и инструкциями по оформлению технической документации
			информационных, компьютерных и сетевых технологий	ПК(У)- 1.2B2	Владеет способами и приемами редактирования текстов и изображений с использованием средств компьютерной графики
	Способен			ПК(У)- 2.1В1	Владеет методами расчетов токов короткого замыкания (КЗ) при различных видах КЗ в энергосистемах
ПК(У) -2.	составить конкурентно- способные варианты технических	И.ПК(У)-2.1.	Обосновывает выбор целесообразного направления решения	ПК(У)- 2.1У1	Умеет рассчитывать параметры схем замещения электроустановок, составлять и преобразовывать схемы в зависимости от вида и места КЗ
	технических решений при проектировании объектов ПД	(3) 2.1.	технологической задачи	ПК(У)- 2.1В3	Имеет опыт математического моделирования переходных процессов в энергосистемах в специализированных программных комплексах
				ПК(У)- 2.1У3	Умеет применять математические модели элементов энергосистем при проведении технологических расчётов

Код	Наименование	Индикаторы	достижения компетенций		гавляющие результатов освоения (дескрипторы компетенции)
компетенции	компетенции	Код индикатора	Наименование индикатора достижения	Код	Наименование
				ПК(У)- 2.133	Знает общие принципы математического моделирования элементов энергосистем
				ПК(У)- 3.1В1	Владеет навыками применения профессиональных программных комплексов и автоматизированных систем проектирования для проведения расчётов электрических режимов, механической части линий электропередачи
		И.ПК(У)-3.1.	Способен проводить расчёты электрических	ПК(У)- 3.1У1	Умеет подготавливать исходные данные в соответствии с требованиями профессиональных программных комплексов и автоматизированных систем проектирования
	Способен проводить проектирование в		режимов и надёжности электроснабжения энергорайонов энергосистем, рассчитывать	ПК(У)- 3.131	Знает технологию ввода данных и анализа результатов, полученных с помощью профессиональных программных комплексов и автоматизированных систем проектирования
ПК(У) -3.	соответствии с техническим заданием с		механическую часть линий электропередачи и силовую часть электрических подстанций в соответствии с техническим заданием и с использованием	ПК(У)- 3.1В2	Владеет навыками чтения и создания схем электрических соединений
	использованием стандартных методов			ПК(У)- 3.1У2	Умеет представлять энергетические объекты на схемах в соответствии с требованиями нормативно-технической документации
			стандартных методов	ПК(У)- 3.132	Знает отличия в представлении энергообъектов с разными конструктивными характеристиками
				ПК(У)- 3.1B3	Владеет опытом моделирования процессов при выполнении режимных расчётов
				ПК(У)- 3.1У3	Умеет планировать и проводить расчетные эксперименты, связанные с определением максимальнодопустимых перетоков мощности и с функционированием устройств режимной и противоаварийной автоматики энергосистем

2. Место дисциплины (модуля) в структуре ООП Дисциплина относится к вариативной части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Планируемые результаты обучения по дисциплине	Индикатор
Код	Наименование	достижения
		компетенции
		Код
РД 1	Демонстрирует готовность планировать, подготавливать и выполнять типовые	И.ПК(У)-1.1.
	экспериментальные исследования по известной методике.	И.ПК(У)-1.2.
		И.ПК(У)-3.1.
		И.ОПК(У)-3.5.
РД 2	Способен использовать современные программные комплексы для моделирования	И.ПК(У)-2.1.
	электрических схем и проведения расчётов.	И.ПК(У)-3.1.
		И.ОПК(У)-3.5.
РД 3	Способен получить и анализировать результаты расчётов предельных перетоков	И.ПК(У)-3.1.
	мощностей по критериям статической апериодической и динамической	И.ОПК(У)-3.5.

устойчивости.

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый	Виды учебной	Объем
	результат	деятельности	времени,
	обучения по		ч.
	дисциплине		
Раздел 1. Формирование базовой	РД 1, РД-2	Практические занятия /	10 / 20
расчётной модели части		Самостоятельная работа	
энергосистемы (энергорайона)			
Раздел 2. Исследование предельных	РД 1, РД-2,	Практические занятия /	12 / 30
по статической апериодической	РД-3	Самостоятельная работа	
устойчивости максимально			
допустимого и аварийно			
допустимого перетоков активной			
мощности по критериям в			
нормальной и ремонтной схемах с			
помощью программного комплекса			
RASTRWIN3.			

Содержание разделов дисциплины:

Раздел 1. Формирование базовой расчётной модели части энергосистемы (энергорайона)

Формирование базовой расчетной модели по режимным контрольным измерениям для проведения исследований.

Темы практических занятий:

- 1. Способы представления элементов электрических сетей энергосистем при расчете режимов.
- 2. Расчёт диаграммы мощностей гидро- и турбогенераторов электрических станций.
- 3. Схемно-режимные условия.
- 4. Создание базовой расчётной модели.

Раздел 2. Исследование предельных по статической апериодической устойчивости максимально допустимого и аварийно допустимого перетоков активной мощности по критериям в нормальной и ремонтной схемах с помощью программного комплекса RASTRWIN3

Изучение правил определения максимально допустимых и аварийно допустимых перетоков активной мощности в контролируемых сечениях.

Темы практических занятий:

- 1. Расчёт и анализ результатов установившегося режима.
- 2. Виды нормативных возмущений. Общие положения правил определения максимально допустимых и аварийно допустимых перетоков активной мощности.
- 3. Определение амплитуды нерегулярных отклонений активной мощности в контролируемых сечениях.

- 4. Определение допустимого перетока активной мощности по критерию обеспечения нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в нормальном режиме в доаварийной схеме.
- 5. Определение допустимого перетока активной мощности в контролируемом сечении по критерию обеспечения нормативного коэффициента запаса статической апериодической устойчивости по активной мощности в контролируемом сечении в послеаварийном режиме после нормативного возмущения.
- 6. Определение допустимого перетока активной мощности в контролируемом сечении по критерию обеспечения нормативного коэффициента запаса статической устойчивости по напряжению в узле нагрузки в послеаварийном режиме после нормативного возмущения.
- 7. Определение допустимого перетока активной мощности в контролируемом сечении по критерию обеспечения допустимой токовой нагрузки ЛЭП и электросетевого оборудования в послеаварийном режиме после нормативного возмущения.
- 8. Определение допустимого перетока активной мощности в контролируемом сечении по критерию обеспечения нормативного коэффициента запаса статической устойчивости по напряжению в узле нагрузки в нормальном режиме в доаварийной схеме.
- 9. Определение допустимого перетока активной мощности в контролируемом сечении по критерию обеспечения допустимой токовой нагрузки ЛЭП и электросетевого оборудования в нормальном режиме в доаварийной схеме.

Тема комплексного проекта: «Исследование предельных по статической апериодической устойчивости перетоков активной мощности в контролируемом сечении».

Для выполнения комплексного проекта в качестве исходных данных преподавателем персонально каждому студенту задаются:

- 1. Краткое описание исследуемой части энергосистемы.
- 2. Топологическая схема электрических соединений или нормальная схема электрических соединений.
- 3. Марка (тип) и технические характеристики генерирующего оборудования.
- 4. Марка (тип) и технические характеристики электросетевого оборудования.
- 5. Параметры электрических нагрузок.

Каждый вариант разрабатывается персонально для каждого студента.

В качестве примера приведены исходные данные.

Тема: «Исследование предельных по статической апериодической устойчивости перетоков активной мощности части Томской энергосистемы».

Краткое описание исследуемой части энергосистемы

Расчётная схема включает в себя часть энергосистемы Томской области, в которую входят объекты классом напряжения 500, 220 и 110 кВ.

Томская область является субъектом Российской Федерации (РФ), входит в состав Сибирского Федерального округа (СФО). Томская область расположена на юго-востоке Западно-Сибирской равнины. Площадь территории составляет 314,4 тыс. км².

ОСОБЕННОСТИ ПРИРОДО-КЛИМАТИЧЕСКИХ УСЛОВИЙ

Рельеф Томской области плоский, значительная часть почв территории сильно увлажнена или заболочена. Диапазон высот находится в пределах от +274 м до +34 м над уровнем Балтийского моря.

Значительная часть территории области труднодоступна, так как представляет собой тайгу. Леса и кустарники занимают 63,7% площади, болота -29,2%, озера и реки -1,9%, сельскохозяйственные угодья -4,4%. Величина площади, покрытой лесом, составляет 19 249,4 тыс. га.

Тип климата — резко континентальный, характеризуется теплым летом и холодной зимой. Среднегодовая температура воздуха отрицательная и изменяется от -0.5° C на юге до -2.5° C на северо-востоке области. Минимум температуры наблюдается в январе, максимум температуры воздуха приходится на июль. Абсолютная минимальная зарегистрированная температура воздуха -55° C. Максимальная зарегистрированная температура $+36^{\circ}$ C. Смена сезонов происходит достаточно быстро, но наблюдаются возвраты к холодам и оттепелям.

Годовое количество осадков составляет 520 мм. Наибольшее годовое количество осадков выпадает в северной части области. Основную часть составляют летние осадки. Среднее значение снежного покрова -60-80 см, снег держится на севере 190-197 дней, на юге -176-182 дня. Снежный покров формируется в конце октября и сходит в конце апреля.

Грозы бывают в среднем 24 раза в год, начинаются в конце апреля и заканчиваются в октябре. Грозы достаточно сильные из-за серьёзного различия температур воздушных масс из Средней Азии и Севера Западно-Сибирской равнины с Васюганскими болотами, их основная часть выпадает на вечернее время. Средняя скорость ветра 1,6 м/с, но в начале весны часто дуют сильные ветра с порывами до 30 м/с, всё это вызывается частой сменой циклонов и антициклонов и соответственным перепадом давления. Господствуют ветры юго-западного и южного направлений – около 50 %.

Средняя месячная относительная влажность воздуха наиболее холодного месяца составляет 80%, наиболее теплого месяца – 74%.

Образование гололедо-изморозевых отложений возможно с октября по май. Гололед чаще отмечается осенью и весной, изморозь — зимой. В течение зимы в области обычно бывает 2 дня с гололедом, наибольшее же число таких дней приходится на ноябрь и декабрь. В среднем за год отмечается 34 дня с изморозью.

Степень опасности гололедо-изморозевых отложений зависит от их массы. Наибольшую опасность представляют гололедо-изморозевые отложения в сочетании с сильным ветром. При этом наибольшие нагрузки создаются при ветре, направленном перпендикулярно к линии электропередач, наименьшие — при ветре, совпадающем с направлением проводов. При гололедо-изморозевых отложениях наблюдаются преимущественно южное и юго-западное направления ветра.

В настоящее время регион отнесен к III — IV району по гололедно-ветровым нагрузкам, которые характеризуются следующими параметрами: стенка гололеда до 20 мм; давление ветра — $800~\Pi a$; скорость ветра до 36~м/c. Томская область относится к районам с умеренной пляской проводов.

К основным неблагоприятным инженерно-геологическим процессам на территории области, оказывающим влияние на решения при проектировании, относятся процессы морозного пучения грунтов, сейсмичность, подтопления и затопления территории.

Сейсмическая активность по бальной системе шкалы MSK-64 не превышает 5 баллов. XAPAKTEPИСТИКА ЭНЕРГОСИСТЕМЫ

Энергосистема Томской области входит в состав Объединенной энергосистемы (ОЭС) Сибири.

В энергосистему Томской области входит 9 электростанций суммарной установленной мощностью 1036,4 МВт. Томская ГРЭС-2, Томская ТЭЦ-1, Томская ТЭЦ-3 принадлежат АО «Томская генерация». ТЭЦ «Сибирского химического комбината» принадлежит АО «ОТЭК». Остальные электростанции — это электростанции промышленных предприятий: вспомогательная котельная принадлежит ООО «Томскнефтехим», ГТЭС Игольско-Талового нмр, ГТЭС 2×6 МВт Игольско-Талового нмр, ГТЭС Двуреченская принадлежат АО «Томскнефть» ВНК, Шингинская ГТЭС — ООО «ГазпромнефтьВосток». Все электростанции работают параллельно с ЕЭС России.

Основными субъектами электроэнергетики, функционирующими на территории Томской области, являются: Филиал АО «СО ЕЭС» Кемеровское РДУ; АО «Томская генерация»; Филиал АО «ОТЭК» в г. Северск; Филиал ПАО «ФСК ЕЭС»; Кузбасское ПМЭС; ПАО «ТРК»; ООО «Энергонефть Томск»; ЗАО «Энерго Сервис»; ООО «Газпромнефть-

Восток»; ООО «Томскнефтехим»; АО «Сибирский химический комбинат» (АО «СХК»); ООО «Электросети» (ЗАТО Северск); ООО «Горсети»; Филиал ОАО «РЖД» Трансэнерго Западно-Сибирская дирекция по энергообеспечению Тайгинская дистанция электроснабжения; ООО «РН-Энерго»; ПАО «Томскэнергосбыт».

Схема основной электрической сети на территории Томской области сформирована на напряжениях 220-500 кВ, распределительной — на напряжениях 35-110 кВ. Протяженность ВЛ и КЛ в одноцепном исполнении для класса напряжения 500 кВ составляет 91,18 км, для класса напряжения 220 кВ — 2059,15 км.

Энергосистема Томской области характеризуется дефицитным балансом мощности. Величина дефицита мощности составляет до 60% от собственного максимума потребления мощности. Оставшаяся часть нагрузки покрывается за счет перетоков мощности из соседних энергосистем.

Энергосистема Томской области имеет межсистемные связи с энергосистемой Тюменской области (2 ВЛ 220 кВ, 3 ВЛ 110 кВ), Новосибирской области (1 ВЛ 110 кВ), Красноярского края (1 ВЛ 500 кВ) и Кемеровской области (1 ВЛ 500 кВ, 2 ВЛ 220 кВ, 1 ВЛ 110 кВ).

Динамика электропотребления в Томской области неравномерная. На уровень электропотребления значительное влияние оказывает температура наружного воздуха и изменение объемов промышленного производства (в первую очередь АО «СХК»).

Основными группами потребителей являются: предприятия по добыче полезных ископаемых (26,2%) от общего объема потребления), обрабатывающие производства (22,1%), население (14,5%) и предприятия по производству и распределению электроэнергии, газа и воды (12,0%).

Таблица 1 – Параметры трансформаторов

		•	•		Кат	галожны	е данные	9					Pac	чётные д	цанные		
Тип	S_{hom}	U_{hom}	, обмото	к, кВ	U _K , %				I	$R_{_{\mathrm{T}}}$, Om			$X_{T^{j}}$ OM			ΔQ_{x} ,	
ТИП	MBA	ВН	СН	НН	BH- CH	BH- HH	CH- HH	$ \Delta P_ $	Вт $\Delta P_{\mathbf{x}}$, кВт	% %	ВН	СН	НН	ВН	СН	НН	д у _ж , квар
ТДТН- 80000/ 110	80	115	38,5	6,6; 11	11	18,5	7	390	82	0,6	0,4	0,4	0,4	18,6	0	11,9	480
ТДТН- 63000/ 110	63	115	11; 34,5; 38,5	6,6; 11	10,5	17	6,5	290	56	0,7	0,5	0,5	0,5	22,0	0	13,6	441
ТДЦ- 80000/110	80	121	-	6,3; 10,5; 13,8	-	10,5	1	310	70	0,6	0,71	1	1	19,2	-	1	480
ТДЦ- 125000/110	125	121	-	10,5; 13,8	-	10,5	-	400	120	0,55	0,37	-	-	12,3	-	-	687,5

Таблица 2 – Параметры автотрансформаторов

1		HOM!		Каталожные данные							Расчётные данные							
		ΙBΑ	$U_{_{ m HOS}}$, обмо	оток, кВ		U _{K} , %		ΔP_{κ} ,			i	R_m, O_M		•	X_m, O_i	И	
Тип	AT	Об- мот- ки НН	ВН	СН	НН	BH- CH	BH- HH	СН-	ВН- СН, кВт	⊿₽ ", кВт	I _x , %	ВН	СН	НН	ВН	СН	НН	$arDelta oldsymbol{Q}_{x}$, квар
АТДЦТН- 125000/220/110	125	-	230	121	6,6; 11; 38,5	11/ 11	31/ 45	19/ 28	290/ 305	85/ 65	0,5	0,5/ 0,52	0,5/ 0,52	1,0/ 3,2	48,6/ 49,0	0	82,5/ 131	625
АТДЦТН- 200000/220/110	200	-	230	121	6,6; 11; 38,5	11	32	20	430	125	0,5	0,3	0,3	0,6	30,4	0	54,2	1000
АОДЦТН- 167000/500/220	167	50/ 67/ 83	500/ √3	230/ √3	11;38,5/ 13,8/ 15,75;20	11	35	21,5	325	125	0,4	0,65	0,65	2,2/ 1,6/ 1,3	61,1	0	113,5	2004

Таблица 3 – Параметры турбогенераторов

Тип	Р , Мвт	Cosφ , o.e.	Q , Мвар	U _{ном} , кВ	<i>X</i> _d , o.e.	X_{d}^{r} , o.e.	<i>X</i> _d , o.e.	X ₂ , o.e.	Частота вращения, 1/мин	<i>T</i> _{d0} , c
TB-60-2	60	0,8	45	10,5	0,157	0,242	2,200	0,191	3000	11,7
ТФП-110-2У3	110	0,8	82,5	10,5	0,189	0,271	2,040	0,230	3000	6,70
T2-50-2	50	0,8	37,5	10,5	0,135	0,200	1,840	0,165	3000	11,6
TB-50-2	50	0,8	37,5	10,5	0,135	0,200	1,840	0,165	3000	11,6
ТФ-63-2У3	63	0,8	47,25	10,5	0,153	0,268	2,180	0,186	3000	6,20

Таблица 4 – Параметры ЛЭП

Название	R, Ом	Х, Ом	В, мкс	G, мкс
Томская ГРЭС-2, ІІ СШ-110 кВ - ПС 220 кВ Зональная, 2 СШ-110кВ	1,275	2,955	-21,75	0
ПС 110 кВ Солнечная, 1 секция 110 кВ - ПС 220 кВ Зональная, 1 СШ-110кВ	2,226	4,251	-30,21	0

Томская ГРЭС-2, І СШ-110 кВ - ПС 220 кВ Зональная, 1 СШ-110кВ	1,275	2,955	-21,75	0
ПС 220 кВ Восточная, 1 СШ-220 кВ - ПС 220 кВ Зональная, 3 СЕКЦИЯ 220кВ	0,93	6,5	-43,3	0
ПС 220 кВ Восточная, 2 СШ-110 кВ - Томская ГРЭС-2, І СШ-110 кВ	1,292	2,466	-17,53	0
ПС 220 кВ Восточная, 1 СШ-110 кВ - Томская ГРЭС-2, ІІ СШ-110 кВ	1,292	2,466	-17,53	0
ПС 220 кВ Восточная, 1 СШ-110 кВ - ПС 110 кВ Коммунальная, 1 секция 110 кВ	3,003	5,734	-40,76	0
ПС 110 кВ Коммунальная, 2 секция 110 кВ - ПС 220 кВ Зональная, 2 СШ-110кВ	2,772	5,293	-37,62	0
ПС 220 кВ Восточная, 2 СШ-220 кВ - ПС 500 кВ Томская, 2 секция 220 кВ	1,67	11,69	-77,5	0
ПС 220 кВ Восточная, 2 СШ-110 кВ - ПС 110 кВ Северо-Восточная, 2 секция 110 кВ	0,693	1,323	-9,41	0
ПС 110 кВ Северо-Восточная, 1 секция 110 кВ - ПС 220 кВ Восточная, 1 СШ-110 кВ	0,918	2,128	-15,66	0
ПС 110 кВ Северо-Восточная, 2 секция 110 кВ - ПС 110 кВ Солнечная, 2 секция 110 кВ	1,743	3,328	-23,66	0
ПС 220 кВ Восточная, 1 СШ-220 кВ - ПС 500 кВ Томская, 1 секция 220 кВ	1,67	11,69	-77,5	0

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Поиск и обзор литературы и электронных источников информации;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Выполнение курсового проекта;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература:

- 1. Готман, В.И. Режимы коротких замыканий в электроэнергетических системах: учебное пособие / В. И. Готман; Национальный исследовательский Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2010. URL: http://www.lib.tpu.ru/fulltext2/m/2011/m279.pdf (дата обращения: 19.06.2017) Режим доступа: из корпоративной сети ТПУ. Текст: электронный
- 2. <u>Готман, Владимир Иванович</u>. Короткие замыкания и несимметричные режимы в электроэнергетических системах: учебное пособие / В. И. Готман; Национальный исследовательский Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2011. URL: http://www.lib.tpu.ru/fulltext2/m/2012/m63.pdf (дата обращения: 19.06.2017) Режим доступа: из корпоративной сети ТПУ. Текст: электронный
- 3. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования. РД 153-34.0-20.527-98: учебное пособие. Москва: ЭНАС, 2013. 152 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/104547 (дата обращения: 19.06.2017). Режим доступа: для авториз. пользователей.

Дополнительная литература:

1. Армеев Д.В., Переходные процессы в электрических системах / Армеев Д.В., Гусев Е.П. - Новосибирск: Изд-во НГТУ, 2014. - 332 с. - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL: http://www.studentlibrary.ru/book/ISBN9785778224988.html (дата обращения: 19.06.2017). - Режим доступа: по подписке.

- 2. Сенько, В.В. Несимметричные электромагнитные переходные процессы в электроэнергетических системах: учебное пособие / В.В. Сенько. Самара: АСИ СамГТУ, 2015. 54 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/127587 (дата обращения: 19.06.2017).
- 3. Александров, В.В. Расчет токов коротких замыканий в Электроэнергетических системах: учебное пособие / В.В. Александров, А.А. Малютин. 2-е изд. Москва: ФЛИНТА, 2016. 131 с. ISBN 978-5-9765-2705-8. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/83846 (дата обращения: 19.06.2017).

6.2. Информационное и программное обеспечение

Профессиональные базы данных и информационно-справочные системы доступны по ссылке: https://www.lib.tpu.ru/html/irs-and-pdb

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

- 1. Microsoft Office 2007 Standard Russian Academic; Microsoft Office 2013 Standard Russian Academic;
- 2. Document Foundation LibreOffice;
- 3. Cisco Webex Meetings\$
- 4. Zoom Zoom.
- 5. Google Chrome
- 6. Mathcad 15 Academic Floating

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее оборудование:

	В учебном процессе используется							
№	Наименование специальных помещений	Наименование оборудования						
1.	Аудитория для проведения	Комплект учебной мебели на 20 посадочных мест;						
	учебных занятий всех типов,	Компьютер - 20 шт.						
	курсового проектирования,							
	консультаций, текущего контроля							
	и промежуточной аттестации							
	(компьютерный класс)							
	634034, Томская область, г. Томск,							
	Усова улица, 7							
	126							
2.	Аудитория для проведения	Счетчик электрической энергии Квант - 2 шт.;						
	учебных занятий всех типов,	Комплекс контролеров автоматической частотной						
	курсового проектирования,	разгрузки энергосистемы - 2 шт.;						
	консультаций, текущего контроля	Доска аудиторная поворотная - 1 шт.;Стол						
	и промежуточной аттестации	лабораторный - 2 шт.;Комплект учебной мебели на 8						
	(учебная лаборатория)	посадочных мест;						
	634034, Томская область, г. Томск,	Компьютер - 13 шт.; Принтер - 1 шт.; Телевизор - 1						
	Усова улица, 7	шт.						
	250							

Рабочая программа составлена на основе Общей характеристики образовательной программы «Электроэнергетика» по направлению 13.03.02 «Электроэнергетика и электротехника» / специализация «Электроэнергетические системы и сети» (прием 2020 г., очная форма обучения).

Разработчик:

Должность	Степень, звание	ФИО
Доцент ОЭЭ	к.т.н., доцент	Бацева Н.Л.

Программа одобрена на заседании отделения Электроэнергетики и электротехники ИШЭ (протокол от 01.09.2020 г. № 1/1)

И.о. заведующего кафедрой –	0
руководителя отделения на правах кафедр	оы,
к.т.н., доцент	А.С. Ивашутенко

Лист изменений рабочей программы практики:

Учебный год	Содержание /изменение	Обсуждено на заседании ОЭЭ
2021/2022 учебный год	1. Обновлен список литературы.	От 11.05.2021 г. № 6/1
2022/2023 учебный год	1. Обновлен список литературы.	От 29.06.2022 г. № 6