Модуль дополнительной специализации. Обучение с 2022 года (5 семестр),
Модуль знакомит слушателей с основами машинного и глубокого обучения. В модуле подробно разбираются основные теоретические понятия, необходимые для решения практических задач с помощью инструментов машинного обучения. Также особое внимание уделяется наиболее популярным инструменатам для анализа данных и машинного обучения с использованием язык программирования Python. В модуле рассматриваются решения задачь анализа табличных данных традиционными методами машинного обучения, а также решения задач компьютерного зрения и обработки естественного языка с помощью нейронных сетей. Особое внимание уделяется применению новейших практик в решение вышеуказанных задач. В ходе прохождения модуля обучающиеся самостоятельно разработают и обучат модели разной сложности: от линейных регрессий и классификаторов до гибридных рекомендательных систем или моделей с использованием нейронных сетей, а также смогут:
Анализировать большие объёмы данных.
Применять машинное обучение, чтобы предсказывать события, прогнозировать значения и искать неочевидные закономерности в данных.
Помогать создавать и улучшать продукты в бизнесе, промышленности и науке.
Презентация модуля
В результате успешного прохождения модуля обучающийся будет владеть основными навыками для решения задач обработки и анализа данных с помощью машинного и глубокого обучения. После завершения модуля, обучающийся будет уметь:
- Работать с API разных сервисов, писать парсеры для сбора данных, делать предобработку и предварительный анализ данных;
- Разрабатывать модели машинного обучения для классификации и кластеризации табличных данных;
- Разрабатывать рекомендательные системы;
- Разрабатывать нейросетевые модели для систем компьютерного зрения и обработки естестенного языка;
- Применять современные подходы машинного и глубокого обучения для решения практических задач.
В данном модуле предполагается использование современных инструментов для решения практических задач с помощью машинного и глубокого обучения. Модуль содержит множество практических заданий, призванных закрепить теоретические знания и дать обучающемуся требуемые для работы с данными навыки.